Abstract
Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention.
Original language | English (US) |
---|---|
Article number | 8167 |
Journal | Scientific reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
This work was supported by the Gerber Foundation (to P.L.A.). The authors received support from the NIH (K12 HD043494 to N.E.Y.), the Jean and George Brumley Jr. Neonatal-Perinatal Research Institute, and Zeist Foundation.
ASJC Scopus subject areas
- General