Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function

Zhiqiang Du, Emily T. Crow, Hyun Seok Kang, Liming Li

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

We have recently reported that the yeast chromatin-remodeling factor Swi1 can exist as a prion, [SWI+], demonstrating a link between prionogenesis and global transcriptional regulation. To shed light on how the Swi1 conformational switch influences Swi1 function and to define the sequence and structural requirements for [SWI+] formation and propagation, we functionally dissected the Swi1 molecule. We show here that the [SWI +] prion features are solely attributable to the first 327 amino acid residues (N), a region that is asparagine rich. N was aggregated in [SWI +] cells but diffuse in [swi-] cells; chromosomal deletion of the N-coding region resulted in [SWI+] loss, and recombinant N peptide was able to form infectious amyloid fibers in vitro, enabling [SWI +] de novo formation through a simple transformation. Although the glutamine-rich middle region (Q) was not sufficient to aggregate in [SWI +] cells or essential for SWI/SNF function, it significantly modified the Swi1 aggregation pattern and Swi1 function. We also show that excessive Swi1 incurred Li+/Na+ sensitivity and that the N/Q regions are important for this gain of sensitivity. Taken together, our results provide the final proof of "protein-only" transmission of [SWI+] and demonstrate that the widely distributed "dispensable" glutamine/asparagine-rich regions/motifs might have important and divergent biological functions.

Original languageEnglish (US)
Pages (from-to)4644-4655
Number of pages12
JournalMolecular and cellular biology
Volume30
Issue number19
DOIs
StatePublished - Oct 1 2010

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function'. Together they form a unique fingerprint.

Cite this