Abstract
A Monte Carlo method is developed for simulation of mixed ionic conductivity in β″-alumina-type materials. The conduction plane of these materials is represented by a lattice gas model in which monovalent and divalent cation carriers diffuse via a vacancy mechanism and interact through a nearest-neighbor coulombic repulsion. By comparing experimental data for pure Na+ and pure Ba2+ β″-aluminas with simulation results, it is possible to estimate the near-neighbor interaction energies εi and jump barriers Ui for both kinds of ions. On the basis of these estimations the total ionic conductivity of Na+Ba2+ β″-alumina is calculated as a function of temperature and concentration of carriers. As Ba2+ replaces Na+, the conductivity initially increases as more vacancies become available. For very high temperatures, this increase continues until exchange is complete; but at lower temperatures, the conductivity reaches a peak for some optimal Ba2+ Na+ composition, and then drops off as the number of Ba2+, and hence the strength of ionic correlation, goes up. The presence of ordering in the fully exchanged (all Ba2+) case manifests itself in substantial curvature of the Arrhenius plots for conductivity. The activation energy for conductivity as a function of Ba2+ mole fraction (XBa2+) shows a pronounced rise near an X value of 2 3, in agreement with recent experimental observations.
Original language | English (US) |
---|---|
Pages (from-to) | 103-113 |
Number of pages | 11 |
Journal | Journal of Solid State Chemistry |
Volume | 58 |
Issue number | 1 |
DOIs | |
State | Published - Jun 1985 |
Funding
We are gratefult o G. C. Farrington and B. Dunn for helpful comments,a nd to the AFOSR, DOE, and the NSF-MRL program for support of this research (through Grants AFOSR-82-0221B, DMR82-16972, and DE-AC02-76ER02564).
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry