Divalent and mixed divalent/monovalent conduction in β″-alumina: A Monte Carlo study

Alexander Pechenik*, D. H. Whitmore, Mark A. Ratner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


A Monte Carlo method is developed for simulation of mixed ionic conductivity in β″-alumina-type materials. The conduction plane of these materials is represented by a lattice gas model in which monovalent and divalent cation carriers diffuse via a vacancy mechanism and interact through a nearest-neighbor coulombic repulsion. By comparing experimental data for pure Na+ and pure Ba2+ β″-aluminas with simulation results, it is possible to estimate the near-neighbor interaction energies εi and jump barriers Ui for both kinds of ions. On the basis of these estimations the total ionic conductivity of Na+Ba2+ β″-alumina is calculated as a function of temperature and concentration of carriers. As Ba2+ replaces Na+, the conductivity initially increases as more vacancies become available. For very high temperatures, this increase continues until exchange is complete; but at lower temperatures, the conductivity reaches a peak for some optimal Ba2+ Na+ composition, and then drops off as the number of Ba2+, and hence the strength of ionic correlation, goes up. The presence of ordering in the fully exchanged (all Ba2+) case manifests itself in substantial curvature of the Arrhenius plots for conductivity. The activation energy for conductivity as a function of Ba2+ mole fraction (XBa2+) shows a pronounced rise near an X value of 2 3, in agreement with recent experimental observations.

Original languageEnglish (US)
Pages (from-to)103-113
Number of pages11
JournalJournal of Solid State Chemistry
Issue number1
StatePublished - Jun 1985

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry


Dive into the research topics of 'Divalent and mixed divalent/monovalent conduction in β″-alumina: A Monte Carlo study'. Together they form a unique fingerprint.

Cite this