DNA-nanoparticle superlattices formed from anisotropic building blocks

Matthew R. Jones, Robert J. MacFarlane, Byeongdu Lee, Jian Zhang, Kaylie L. Young, Andrew J. Senesi, Chad A. Mirkin

Research output: Contribution to journalArticlepeer-review

618 Scopus citations

Abstract

Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

Original languageEnglish (US)
Pages (from-to)913-917
Number of pages5
JournalNature materials
Volume9
Issue number11
DOIs
StatePublished - Nov 2010

Funding

C.A.M. acknowledges the NSF-NSEC and the AFOSR for grant support, and the DOE Office (Award No. DE-SC0000989) for support through the NU Nonequilibrium Energy Research Center. He is also grateful for an NSSEF Fellowship from the DoD. M.R.J. acknowledges Northwestern University for a Ryan Fellowship and the NSF for a Graduate Research Fellowship. R.J.M. acknowledges Northwestern University for a Ryan Fellowship. K.L.Y. acknowledges the NSF and the NDSEG for Graduate Research Fellowships. Portions of this work were carried out at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) beamline located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The transmission electron microscope work was carried out in the EPIC facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois and Northwestern University. Ultrathin sectioning was carried out at the Northwestern University Biological Imaging Facility supported by the NU Office for Research.

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'DNA-nanoparticle superlattices formed from anisotropic building blocks'. Together they form a unique fingerprint.

Cite this