TY - JOUR
T1 - Does blame shifting work?
AU - Lazarek, Lukas
AU - King, Alexis
AU - Sundar, Samanvitha
AU - Findler, Robert Bruce
AU - Dimoulas, Christos
N1 - Publisher Copyright:
© 2020 Copyright held by the owner/author(s).
PY - 2020/1
Y1 - 2020/1
N2 - Contract systems, especially of the higher-order flavor, go hand in hand with blame. The pragmatic purpose of blame is to narrow down the code that a programmer needs to examine to locate the bug when the contract system discovers a contract violation. Or so the literature on higher-order contracts claims. In reality, however, there is neither empirical nor theoretical evidence that connects blame with the location of bugs. The reputation of blame as a tool for weeding out bugs rests on anecdotes about how programmers use contracts to shift blame and their attention from one part of a program to another until they discover the source of the problem. This paper aims to fill the apparent gap and shed light to the relation between blame and bugs. To that end, we introduce an empirical methodology for investigating whether, for a given contract system, it is possible to translate blame information to the location of bugs in a systematic manner. Our methodology is inspired by how programmers attempt to increase the precision of the contracts of a blamed component in order to shift blame to another component, which becomes the next candidate for containing the bug. In particular, we construct a framework that enables us to ask for a contract system whether (i) the process of blame shifting causes blame to eventually settle to the component that contains the bug; and (ii) every shift moves blame "closer" to the faulty component. Our methodology offers a rigorous means for evaluating the pragmatics of contract systems, and we employ it to analyze Racket's contract system. Along the way, we uncover subtle points about the pragmatic meaning of contracts and blame in Racket: (i) the expressiveness of Racket's off-the-shelf contract language is not sufficient to narrow down the blamed portion of the code to the faulty component in all cases; and (ii) contracts that trigger state changes (even unexpectedly, perhaps in the runtime system's data structures or caches) interfere with program evaluation in subtle ways and thus blame shifting can lead programmers on a detour when searching for a bug. These points highlight how evaluations such as ours suggest fixes to language design.
AB - Contract systems, especially of the higher-order flavor, go hand in hand with blame. The pragmatic purpose of blame is to narrow down the code that a programmer needs to examine to locate the bug when the contract system discovers a contract violation. Or so the literature on higher-order contracts claims. In reality, however, there is neither empirical nor theoretical evidence that connects blame with the location of bugs. The reputation of blame as a tool for weeding out bugs rests on anecdotes about how programmers use contracts to shift blame and their attention from one part of a program to another until they discover the source of the problem. This paper aims to fill the apparent gap and shed light to the relation between blame and bugs. To that end, we introduce an empirical methodology for investigating whether, for a given contract system, it is possible to translate blame information to the location of bugs in a systematic manner. Our methodology is inspired by how programmers attempt to increase the precision of the contracts of a blamed component in order to shift blame to another component, which becomes the next candidate for containing the bug. In particular, we construct a framework that enables us to ask for a contract system whether (i) the process of blame shifting causes blame to eventually settle to the component that contains the bug; and (ii) every shift moves blame "closer" to the faulty component. Our methodology offers a rigorous means for evaluating the pragmatics of contract systems, and we employ it to analyze Racket's contract system. Along the way, we uncover subtle points about the pragmatic meaning of contracts and blame in Racket: (i) the expressiveness of Racket's off-the-shelf contract language is not sufficient to narrow down the blamed portion of the code to the faulty component in all cases; and (ii) contracts that trigger state changes (even unexpectedly, perhaps in the runtime system's data structures or caches) interfere with program evaluation in subtle ways and thus blame shifting can lead programmers on a detour when searching for a bug. These points highlight how evaluations such as ours suggest fixes to language design.
KW - Blame
KW - Higher-order contracts
KW - Programming languages design evaluation
UR - http://www.scopus.com/inward/record.url?scp=85089756475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089756475&partnerID=8YFLogxK
U2 - 10.1145/3371133
DO - 10.1145/3371133
M3 - Article
AN - SCOPUS:85089756475
SN - 2475-1421
VL - 4
JO - Proceedings of the ACM on Programming Languages
JF - Proceedings of the ACM on Programming Languages
IS - POPL
M1 - 65
ER -