Does learning specific features for related parts help human pose estimation?

Wei Tang, Ying Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

75 Scopus citations

Abstract

Human pose estimation (HPE) is inherently a homogeneous multi-task learning problem, with the localization of each body part as a different task. Recent HPE approaches universally learn a shared representation for all parts, from which their locations are linearly regressed. However, our statistical analysis indicates not all parts are related to each other. As a result, such a sharing mechanism can lead to negative transfer and deteriorate the performance. This potential issue drives us to raise an interesting question. Can we identify related parts and learn specific features for them to improve pose estimation? Since unrelated tasks no longer share a high-level representation, we expect to avoid the adverse effect of negative transfer. In addition, more explicit structural knowledge, e.g., ankles and knees are highly related, is incorporated into the model, which helps resolve ambiguities in HPE. To answer this question, we first propose a data-driven approach to group related parts based on how much information they share. Then a part-based branching network (PBN) is introduced to learn representations specific to each part group. We further present a multi-stage version of this network to repeatedly refine intermediate features and pose estimates. Ablation experiments indicate learning specific features significantly improves the localization of occluded parts and thus benefits HPE. Our approach also outperforms all state-of-the-art methods on two benchmark datasets, with an outstanding advantage when occlusion occurs.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages1107-1116
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

Funding

Acknowledgement. This work was supported in part by National Science Foundation grant IIS-1619078, IIS-1815561, and the Army Research Ofice ARO W911NF-16-1-0138.

Keywords

  • And Body Pose
  • Face
  • Gesture

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Does learning specific features for related parts help human pose estimation?'. Together they form a unique fingerprint.

Cite this