Dropping Anchor: Understanding the Populations of Binary Black Holes with Random and Aligned-spin Orientations

Vishal Baibhav*, Zoheyr Doctor, Vicky Kalogera

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


The relative spin orientations of black holes (BHs) in binaries encode their evolutionary history: BHs assembled dynamically should have isotropically distributed spins, while spins of BHs originating in the field should be aligned with the orbital angular momentum. In this article, we introduce a simple population model for these dynamical and field binaries that uses spin orientations as an anchor to disentangle these two evolutionary channels. We then analyze binary BH mergers in the Third Gravitational-Wave Transient Catalog (GWTC-3) and ask whether BHs from the isotropic-spin population possess different distributions of mass ratios, spin magnitudes, or redshifts from the preferentially aligned-spin population. We find no compelling evidence that binary BHs in GWTC-3 have different source-property distributions depending on their spin alignment, but we do find that the dynamical and field channels cannot both have mass-ratio distributions that strongly favor equal masses. We give an example of how this can be used to provide insights into the various processes that drive these BHs to merge. We also find that the current detections are insufficient in extracting differences in spin magnitude or redshift distributions of isotropic and aligned-spin populations.

Original languageEnglish (US)
Article number50
JournalAstrophysical Journal
Issue number1
StatePublished - Mar 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Dropping Anchor: Understanding the Populations of Binary Black Holes with Random and Aligned-spin Orientations'. Together they form a unique fingerprint.

Cite this