Dynamic social power modulates neural basis of math calculation

Tokiko Harada, Donna Jo Bridge, Joan Y. Chiao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Both situational (e.g., perceived power) and sustained social factors (e.g., cultural stereotypes) are known to affect how people academically perform, particularly in the domain of mathematics. The ability to compute even simple mathematics, such as addition, relies on distinct neural circuitry within the inferior parietal and inferior frontal lobes, brain regions where magnitude representation and addition are performed. Despite prior behavioral evidence of social influence on academic performance, little is known about whether or not temporarily heightening a person's sense of power may influence the neural bases of math calculation. Here we primed female participants with either high or low power (LP) and then measured neural response while they performed exact and approximate math problems. We found that priming power affected math performance; specifically, females primed with high power (HP) performed better on approximate math calculation compared to females primed with LP. Furthermore, neural response within the left inferior frontal gyrus (IFG), a region previously associated with cognitive interference, was reduced for females in the HP compared to LP group. Taken together, these results indicate that even temporarily heightening a person's sense of social power can increase their math performance, possibly by reducing cognitive interference during math performance.

Original languageEnglish (US)
JournalFrontiers in Human Neuroscience
Issue numberFEB
StatePublished - Feb 6 2013

Keywords

  • Inferior frontal gyrus
  • Math achievement
  • Priming
  • Social class
  • fMRI

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Dynamic social power modulates neural basis of math calculation'. Together they form a unique fingerprint.

Cite this