TY - JOUR
T1 - Dynamical interactions and the black-hole merger rate of the Universe
AU - O'Leary, Ryan M.
AU - O'Shaughnessy, Richard
AU - Rasio, Frederic A.
PY - 2007/9/27
Y1 - 2007/9/27
N2 - Binary black holes can form efficiently in dense young stellar clusters, such as the progenitors of globular clusters, via a combination of gravitational segregation and cluster evaporation. We use simple analytic arguments supported by detailed N-body simulations to determine how frequently black holes born in a single stellar cluster should form binaries, be ejected from the cluster, and merge through the emission of gravitational radiation. We then convolve this "transfer function" relating cluster formation to black-hole mergers with (i) the distribution of observed cluster masses and (ii) the star formation history of the Universe, assuming that a significant fraction gcl of star formation occurs in clusters and that a significant fraction gevap of clusters undergo this segregation and evaporation process. We predict future ground-based gravitational wave detectors could observe ∼500(gcl/0.5)(gevap/0.1) double black-hole mergers per year, and the presently operating LIGO interferometer would have a chance (50%) at detecting a merger during its first full year of science data. More realistically, advanced LIGO and similar next-generation gravitational wave observatories provide unique opportunities to constrain otherwise inaccessible properties of clusters formed in the early Universe.
AB - Binary black holes can form efficiently in dense young stellar clusters, such as the progenitors of globular clusters, via a combination of gravitational segregation and cluster evaporation. We use simple analytic arguments supported by detailed N-body simulations to determine how frequently black holes born in a single stellar cluster should form binaries, be ejected from the cluster, and merge through the emission of gravitational radiation. We then convolve this "transfer function" relating cluster formation to black-hole mergers with (i) the distribution of observed cluster masses and (ii) the star formation history of the Universe, assuming that a significant fraction gcl of star formation occurs in clusters and that a significant fraction gevap of clusters undergo this segregation and evaporation process. We predict future ground-based gravitational wave detectors could observe ∼500(gcl/0.5)(gevap/0.1) double black-hole mergers per year, and the presently operating LIGO interferometer would have a chance (50%) at detecting a merger during its first full year of science data. More realistically, advanced LIGO and similar next-generation gravitational wave observatories provide unique opportunities to constrain otherwise inaccessible properties of clusters formed in the early Universe.
UR - http://www.scopus.com/inward/record.url?scp=34848827114&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34848827114&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.76.061504
DO - 10.1103/PhysRevD.76.061504
M3 - Article
AN - SCOPUS:34848827114
SN - 1550-7998
VL - 76
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 061504
ER -