Early planning for clock skew scheduling during register binding

Min Ni*, Seda Ogrenci Memik

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

Design decisions made during high-level synthesis usually have great impacts on the later design stages. In this paper, We present a general framework, which plans for the clock skew scheduling in physical design stages during register binding in high-level synthesis. Our proposed technique pursues the optimality of the native objective functions of the register binding problem. At the same time, it ensures not invalidating the subsequent clock skew scheduling for optimizing the clock period. We use the switching power as the native objective of our register binding problem. The problem is first formulated as a MILP problem. An acceleration scheme based on the concept of weakly compatible edge set (WCES) is proposed to speed up the MILP solver to obtain the optimal solution. Then, we present our heuristic algorithm to reduce the running time further. The experimental results show that on average our acceleration scheme can speed up the solver by 8.6 times, and our heuristic is 70 times faster than the solver with a 5.25% degradation of the native objective. The minimum and maximum degradation among our benchmark set are 0.82% and 12.2% respectively.

Original languageEnglish (US)
Title of host publication2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
Pages429-434
Number of pages6
DOIs
StatePublished - Dec 1 2007
Event2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD - San Jose, CA, United States
Duration: Nov 4 2007Nov 8 2007

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
ISSN (Print)1092-3152

Other

Other2007 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
CountryUnited States
CitySan Jose, CA
Period11/4/0711/8/07

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint Dive into the research topics of 'Early planning for clock skew scheduling during register binding'. Together they form a unique fingerprint.

Cite this