Early Prediction of Mortality in Critical Care Setting in Sepsis Patients Using Structured Features and Unstructured Clinical Notes

Jiyoung Shin, Yikuan Li, Yuan Luo*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Sepsis is an important cause of mortality, especially in intensive care unit(ICU) patients. Developing novel methods to identify early mortality is critical for improving survival outcomes in sepsis patients. Using the MIMIC-III database, we integrated demographic data, physiological measurements and clinical notes. We built and applied several machine learning models to predict the risk of hospital mortality and 30-day mortality in sepsis patients. From the clinical notes, we generated clinically meaningful word representations and embeddings. Supervised learning classifiers and a deep learning architecture were used to construct prediction models. The configurations that utilized both structured and unstructured clinical features yielded competitive F-measure of 0.512. Our results showed that the approaches integrating both structured and unstructured clinical features can be effectively applied to assist clinicians in identifying the risk of mortality in sepsis patients upon admission to the ICU.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
EditorsYufei Huang, Lukasz Kurgan, Feng Luo, Xiaohua Tony Hu, Yidong Chen, Edward Dougherty, Andrzej Kloczkowski, Yaohang Li
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2885-2890
Number of pages6
ISBN (Electronic)9781665401265
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 - Virtual, Online, United States
Duration: Dec 9 2021Dec 12 2021

Publication series

NameProceedings - 2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021

Conference

Conference2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
Country/TerritoryUnited States
CityVirtual, Online
Period12/9/2112/12/21

Keywords

  • Machine Learning
  • Medical Decision Making
  • Mortality
  • Natural Language Processing
  • Sepsis

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Science Applications
  • Biomedical Engineering
  • Health Informatics
  • Information Systems and Management

Fingerprint

Dive into the research topics of 'Early Prediction of Mortality in Critical Care Setting in Sepsis Patients Using Structured Features and Unstructured Clinical Notes'. Together they form a unique fingerprint.

Cite this