Ecoresorbable and bioresorbable microelectromechanical systems

Quansan Yang, Tzu Li Liu, Yeguang Xue, Heling Wang, Yameng Xu, Bashar Emon, Mingzheng Wu, Corey Rountree, Tong Wei, Irawati k Kandela, Chad R. Haney, Anlil Brikha, Iwona Stepien, Jessica Elizabeth Hornick, Rebecca A. Sponenburg, Christina Cheng, Lauren Ladehoff, Yitong Chen, Ziying Hu, Changsheng WuMengdi Han, John M. Torkelson, Yevgenia Kozorovitskiy, M. Taher A. Saif, Yonggang Huang, Jan Kai Chang*, John A. Rogers

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Microelectromechanical systems (MEMS) are essential components in many electronic technologies for consumer and industrial applications. Such devices are typically made using materials selected to support long operational lifetimes, but MEMS designed to physically disintegrate or to dissolve after a targeted period could provide a route to reduce electronic waste and could enable applications that require a finite operating timeframe, such as temporary medical implants. Here we report ecoresorbable and bioresorbable MEMS that are based on fully water-soluble material platforms and can either naturally resorb into the environment to eliminate solid waste or in the body to avoid a need for surgical extraction. We illustrate the biocompatibility of the approach with mechanobiology, histology and haematology studies of the implanted devices and their dissolution end products. We also demonstrate bioresorbable encapsulating materials and deployment strategies in small animal models to reduce device damage, confine mobile fragments and provide robust adhesion with adjacent tissues.

Original languageEnglish (US)
Pages (from-to)526-538
Number of pages13
JournalNature Electronics
Volume5
Issue number8
DOIs
StatePublished - Aug 2022

Funding

This work was supported by the Querrey Simpson Institute for Bioelectronics at Northwestern University. We especially thank L. Saggere at the University of Illinois Chicago for helping with the optical characterization of the devices. This work made use of the NUFAB facility of Northwestern University\u2019s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633); the MRSEC program (NSF DMR-1720139) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; the Querrey Simpson Institute for Bioelectronics; the Keck Biophysics Facility, a shared resource of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, which has received support in part by the NCI Cancer Center Support (P30 CA060553); the Center for Advanced Molecular Imaging (RRID:SCR_021192); Northwestern University; and the State of Illinois, through the IIN. Elemental analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center generously supported by NASA Ames Research Center Grant (NNA04CC36G). B.E. acknowledges support from the National Institutes of Health (T32 EB019944). M.W. acknowledges support from the National Institutes of Health (T32 AG20506). Y.K. acknowledges support from the National Institutes of Health (R01 NS107539 and R01 MH117111), Beckman Young Investigator Award, Rita Allen Foundation Scholar Award and Searle Scholar Award. M.T.A.S. acknowledges support from the National Science Foundation (ECCS 19-34991) and Illinois Cancer Center seed grant at the University of Illinois at Urbana-Champaign. Y.H. acknowledges support from the National Science Foundation (CMMI 16-35443). The diagrams in Figs. and are created with BioRender ( https://biorender.com/ ).

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Ecoresorbable and bioresorbable microelectromechanical systems'. Together they form a unique fingerprint.

Cite this