Edge weight prediction in weighted signed networks

Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, Christos Faloutsos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

125 Scopus citations


Weighted signed networks (WSNs) are networks in which edges are labeled with positive and negative weights. WSNs can capture like/dislike, trust/distrust, and other social relationships between people. In this paper, we consider the problem of predicting the weights of edges in such networks. We propose two novel measures of node behavior: The goodness of a node intuitively captures how much this node is liked/trusted by other nodes, while the fairness of a node captures how fair the node is in rating other nodes' likeability or trust level. We provide axioms that these two notions need to satisfy and show that past work does not meet these requirements for WSNs. We provide a mutually recursive definition of these two concepts and prove that they converge to a unique solution in linear time. We use the two measures to predict the edge weight in WSNs. Furthermore, we show that when compared against several individual algorithms from both the signed and unsigned social network literature, our fairness and goodness metrics almost always have the best predictive power. We then use these as features in different multiple regression models and show that we can predict edge weights on 2 Bitcoin WSNs, an Epinions WSN, 2 WSNs derived from Wikipedia, and a WSN derived from Twitter with more accurate results than past work. Moreover, fairness and goodness metrics form the most significant feature for prediction in most (but not all) cases.

Original languageEnglish (US)
Title of host publicationProceedings - 16th IEEE International Conference on Data Mining, ICDM 2016
EditorsFrancesco Bonchi, Xindong Wu, Ricardo Baeza-Yates, Josep Domingo-Ferrer, Zhi-Hua Zhou
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages10
ISBN (Electronic)9781509054725
StatePublished - Jan 31 2017
Externally publishedYes
Event16th IEEE International Conference on Data Mining, ICDM 2016 - Barcelona, Catalonia, Spain
Duration: Dec 12 2016Dec 15 2016

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786


Other16th IEEE International Conference on Data Mining, ICDM 2016
CityBarcelona, Catalonia

ASJC Scopus subject areas

  • Engineering(all)


Dive into the research topics of 'Edge weight prediction in weighted signed networks'. Together they form a unique fingerprint.

Cite this