TY - JOUR
T1 - EEG state-trajectory instability and speed reveal global rules of intrinsic spatiotemporal neural dynamics
AU - Menceloglu, Melisa
AU - Grabowecky, Marcia
AU - Suzuki, Satoru
N1 - Publisher Copyright:
© 2020 Menceloglu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/8
Y1 - 2020/8
N2 - Spatiotemporal dynamics of EEG/MEG (electro-/magneto-encephalogram) have typically been investigated by applying time-frequency decomposition and examining amplitude-amplitude, phase-phase, or phase-amplitude associations between combinations of frequency bands and scalp sites, primarily to identify neural correlates of behaviors and traits. Instead, we directly extracted global EEG spatiotemporal dynamics as trajectories of k-dimensional state vectors (k = the number of estimated current sources) to investigate potential global rules governing neural dynamics. We chose timescale-dependent measures of trajectory instability (approximately the 2nd temporal derivative) and speed (approximately the 1st temporal derivative) as state variables, that succinctly characterized trajectory forms. We compared trajectories across posterior, central, anterior, and lateral scalp regions as the current sources under those regions may serve distinct functions. We recorded EEG while participants rested with their eyes closed (likely engaged in spontaneous thoughts) to investigate intrinsic neural dynamics. Some potential global rules emerged. Time-averaged trajectory instability from all five regions tightly converged (with their variability minimized) at the level of generating nearly unconstrained but slightly conservative turns (~100 on average) on the timescale of ~25 ms, suggesting that spectral-amplitude profiles are globally adjusted to maintain this convergence. Further, within-frequency and cross-frequency phase relations appear to be independently coordinated to reduce average trajectory speed and increase the variability in trajectory speed and instability in a relatively timescale-invariant manner, and to make trajectories less oscillatory. Future research may investigate the functional relevance of these intrinsic global-dynamics rules by examining how they adjust to various sensory environments and task demands or remain invariant. The current results also provide macroscopic constraints for quantitative modeling of neural dynamics as the timescale dependencies of trajectory instability and speed are relatable to oscillatory dynamics.
AB - Spatiotemporal dynamics of EEG/MEG (electro-/magneto-encephalogram) have typically been investigated by applying time-frequency decomposition and examining amplitude-amplitude, phase-phase, or phase-amplitude associations between combinations of frequency bands and scalp sites, primarily to identify neural correlates of behaviors and traits. Instead, we directly extracted global EEG spatiotemporal dynamics as trajectories of k-dimensional state vectors (k = the number of estimated current sources) to investigate potential global rules governing neural dynamics. We chose timescale-dependent measures of trajectory instability (approximately the 2nd temporal derivative) and speed (approximately the 1st temporal derivative) as state variables, that succinctly characterized trajectory forms. We compared trajectories across posterior, central, anterior, and lateral scalp regions as the current sources under those regions may serve distinct functions. We recorded EEG while participants rested with their eyes closed (likely engaged in spontaneous thoughts) to investigate intrinsic neural dynamics. Some potential global rules emerged. Time-averaged trajectory instability from all five regions tightly converged (with their variability minimized) at the level of generating nearly unconstrained but slightly conservative turns (~100 on average) on the timescale of ~25 ms, suggesting that spectral-amplitude profiles are globally adjusted to maintain this convergence. Further, within-frequency and cross-frequency phase relations appear to be independently coordinated to reduce average trajectory speed and increase the variability in trajectory speed and instability in a relatively timescale-invariant manner, and to make trajectories less oscillatory. Future research may investigate the functional relevance of these intrinsic global-dynamics rules by examining how they adjust to various sensory environments and task demands or remain invariant. The current results also provide macroscopic constraints for quantitative modeling of neural dynamics as the timescale dependencies of trajectory instability and speed are relatable to oscillatory dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85090004228&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090004228&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0235744
DO - 10.1371/journal.pone.0235744
M3 - Article
C2 - 32853257
AN - SCOPUS:85090004228
SN - 1932-6203
VL - 15
JO - PloS one
JF - PloS one
IS - 8 August
M1 - e0235744
ER -