Effect of isovalent substitution on the thermoelectric properties of the Cu2ZnGeSe4- xSx series of solid solutions

Christophe P. Heinrich, Tristan W. Day, Wolfgang G. Zeier, G. Jeffrey Snyder*, Wolfgang Tremel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

66 Scopus citations

Abstract

Knowledge of structure-property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu2ZnGeSe 4-xSx (x = 0-4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a change in bonding angles, resulting in crystallographic strain possibly affecting transport properties. Thermal transport measurements showed a reduction in the room-temperature thermal conductivity of 42% triggered by the introduced disorder. Thermal transport calculations of mass and strain contrast revealed that 34% of the reduction in thermal conductivity is due to the mass contrast only and 8% is due to crystallographic strain.

Original languageEnglish (US)
Pages (from-to)442-448
Number of pages7
JournalJournal of the American Chemical Society
Volume136
Issue number1
DOIs
StatePublished - Jan 8 2014

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Effect of isovalent substitution on the thermoelectric properties of the Cu<sub>2</sub>ZnGeSe<sub>4- x</sub>S<sub>x</sub> series of solid solutions'. Together they form a unique fingerprint.

Cite this