Effects of Annular Size, Transmitral Pressure, and Mitral Flow Rate on the Edge-To-Edge Repair: An In Vitro Study

Jorge H. Jimenez, Joseph Forbess, Laura R. Croft, Lisa Small, Zhaoming He, Ajit P. Yoganathan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Background: Although edge-to-edge repair is an established adjunctive procedure, there is still debate on its long-term durability and efficacy. Methods: Fifteen porcine mitral valves were studied in a physiologic left heart simulator with a variable size annulus (dilated = 8.22 cm2, normal = 6.86 cm2, contracted = 5.5 cm2). Mitral valves were tested under steady and physiologic pulsatile flow conditions (cardiac outputs: 4 to 6 L/min), at peak transmitral pressures between 100 mm Hg and 140 mm Hg. A miniature force transducer was used to measure the Alfieri stitch force (FA). Mitral flow rate (MFR), transmitral pressure, effective orifice area, mitral regurgitation, and FA were monitored. Results: The edge-to-edge repair led to a decrease in effective orifice area of 16.55% ± 8.22%; further reduction in effective orifice area was attained with annular contraction. Mitral regurgitation after the edge-to-edge repair was significantly higher (p <0.05) with annular dilation. In the pulsatile experiments, two peaks in FA were observed: one during systole (FA = 0.059 ± 0.024 N) and a second during diastole (FA = 0.072 ± 0.021 N). Multivariate analysis of variance analysis showed that during systole, transmitral pressure and mitral annular area (MAA) had significant effects on FA [FA = (4.40 × 10-4) transmitral pressure (mm Hg) + (5.0 × 10-3) MAA (cm2) - 0.05 (R2= 0.80)], whereas during diastole MFR and MAA had significant effects on FA [FA = (1.03 × 10-4) MFR2 (L/min) - (1.60 × 10-3) MAA (cm2) + 0.02 (R2 = 0.90)]. Conclusions: With annular dilation, mitral regurgitation persisted even after the edge-to-edge repair. The edge-to-edge repair does not cause clinically relevant mitral valve stenosis in a normal size mitral valve. Mitral flow rate and transmitral pressure are the main determinants of FA during the cardiac cycle. Increasing annular area increases FA during systole but decreases FA during diastole. Systolic FA may become dominant with increases in MAA or peak transmitral pressure, or both.

Original languageEnglish (US)
Pages (from-to)1362-1368
Number of pages7
JournalAnnals of Thoracic Surgery
Volume82
Issue number4
DOIs
StatePublished - Oct 2006

Funding

This work was supported by a grant from the National Heart, Lung, and Blood Institute (HL52009).

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Pulmonary and Respiratory Medicine
  • Surgery

Fingerprint

Dive into the research topics of 'Effects of Annular Size, Transmitral Pressure, and Mitral Flow Rate on the Edge-To-Edge Repair: An In Vitro Study'. Together they form a unique fingerprint.

Cite this