Effects of confinement for single-well potentials

Oran Gannot*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We study bound states generated by a unique potential minimum in the situation where the system is strongly confined to a bounded region containing the minimum (by imposing Dirichlet boundary conditions). In this case, the eigenvalues of the confined system differ from those of the unconfined system by an exponentially small quantity in the semiclassical limit. An asymptotic expansion for this shift is established. The formulas are evaluated explicitly for the harmonic oscillator and an application to the Coulomb potential at a fixed angular momentum is given.

Original languageEnglish (US)
Article number023510
JournalJournal of Mathematical Physics
Volume57
Issue number2
DOIs
StatePublished - Feb 1 2016

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Dive into the research topics of 'Effects of confinement for single-well potentials'. Together they form a unique fingerprint.

Cite this