Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture

Matthew A. Krutky, Randy D. Trumbower, Eric J. Perreault

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

Using the upper limb to manipulate objects or tools requires maintenance of stable arm posture. The ability to maintain stable postures is dependent on the mechanical properties of the arm, which can be characterized by estimates of endpoint stiffness. In this study we quantified the endpoint stiffness of the human arm during postural interactions with mechanically imposed unstable loads. The purpose was to determine the extent to which arm stiffness is adapted according to the mechanical properties of the environment during postural tasks. We estimated the endpoint stiffness of the right arms of eight subjects as they interacted with four haptic environments: rigid, unstable along the direction of maximal endpoint stiffness and orthogonal to this direction, and a high-strength unstable environment also aligned to the orientation of maximal endpoint stiffness. The size and orientation of endpoint stiffness were quantified for each haptic condition. Stiffness size was increased along the directions of the destabilizing environments (p<0.003). However, the environments had no significant effect on stiffness orientation (p>0.26). These findings suggest that at a fixed posture interactions with unstable environments can induce moderate, task-appropriate changes in limb mechanics that are tuned to the environment. However, these changes are small relative to those that can be obtained by changing limb posture.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
Pages5938-5941
Number of pages4
DOIs
StatePublished - 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • General Medicine
  • Biomedical Engineering
  • Cell Biology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Effects of environmental instabilities on endpoint stiffness during the maintenance of human arm posture'. Together they form a unique fingerprint.

Cite this