@inproceedings{7dae6aebe9a84c87a71e2f0b63f8a2e6,
title = "Effects of moisture on ultrasound propagation in cement mortar",
abstract = "In concrete structures, moisture is often a major cause of chemically related degradations such as alkaline-silica reaction. To develop ultrasonic nondestructive evaluation techniques for monitoring such chemical degradations, it is necessary to understand how moisture affects the propagation of ultrasound in concrete. To this end, the objective of this paper is to experimentally determine the correlation between the moisture content in cement mortar and ultrasonic wave propagation. Specifically, effects of moisture on the ultrasonic phase velocity and attenuation are examined. It is found that, for the cement mortar samples considered in this study, moisture has negligible effect on the ultrasonic phase velocity. However, moisture can significantly increase the attenuation of ultrasound in cement mortar even in the sub-MHz frequency range.",
author = "Taeho Ju and Shuaili Li and Jan Achenbach and Jianmin Qu",
note = "Publisher Copyright: {\textcopyright} 2015 AIP Publishing LLC.; 41st Annual Review of Progress in Quantitative Nondestructive Evaluation, QNDE 2014 ; Conference date: 20-07-2014 Through 25-07-2014",
year = "2015",
doi = "10.1063/1.4914756",
language = "English (US)",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
pages = "1409--1414",
editor = "Chimenti, {Dale E.} and Bond, {Leonard J.}",
booktitle = "41st Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 34",
}