Effects of muscle contraction on the load-strain properties of frog aponeurosis and tendon

Richard L. Lieber*, Margot E. Leonard, Cynthia G. Brown-Maupin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

79 Scopus citations

Abstract

The mechanical properties of the frog semitendinosus (ST) tendon and aponeurosis were measured during passive tensile loading to a force equal to ST maximum tetanic tension and during active isometric muscle contraction. During active contraction, both the tendon and aponeurosis regions initially strained at rates exceeding 400%/s while near the end of the muscle contraction, strain rates were nearly zero. At this point, the strain in the tendon region was equal to that observed during slow passive loading to the same tension level. However, for the aponeurosis, even near the zero strain rate, strain at the end of the active contraction was significantly below that observed during slow passive loading (p < 0.001). Specifically, when aponeurosis strain rate was almost zero, aponeurosis strain was 13.8 ± 3% (means ± SEM, n = 10), which was significantly below that measured during passive loading (23.7 ± 5%) suggesting that active contraction actually altered aponeurosis material properties. These data demonstrate that, while the tendon and aponeurosis regions have different passive biomechanical properties and both demonstrate viscosity typical of other connective tissues, the aponeurosis region of the frog ST actually changed its intrinsic properties during muscle contraction. Thus, extrapolation of biomechanical data obtained at nonphysiological strain rates or under conditions where the muscle-tendon junction has been interrupted should be made with caution. Copyright (C) 2000 S. Karger AG, Basel.

Original languageEnglish (US)
Pages (from-to)48-54
Number of pages7
JournalCells Tissues Organs
Volume166
Issue number1
DOIs
StatePublished - 2000

Keywords

  • Aponeurosis
  • Muscle contraction
  • Muscle-tendon junction
  • Rana pipiens
  • Semitendinosus
  • Strain rate
  • Tendon mechanics
  • Viscoelasticity

ASJC Scopus subject areas

  • Anatomy
  • Histology

Fingerprint Dive into the research topics of 'Effects of muscle contraction on the load-strain properties of frog aponeurosis and tendon'. Together they form a unique fingerprint.

Cite this