Effects of supported lipid monolayer fluidity on the adhesion of hematopoietic progenitor cell lines to fibronectin-derived peptide ligands for α5β1 and α4β1 integrins

A. Sofia Garcia, Shara M. Dellatore, Phillip B. Messersmith, William M. Miller

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Mimicking the in vivo stem cell niche to increase stem cell expansion will likely require the presentation of multiple ligands. Presenting ligands in fluid-supported lipid monolayers (SLMs) or bilayers (SLBs) allows for ligand diffusion to complement the arrangement of cell receptors as well as cell-mediated ligand rearrangement and clustering. Cells in tissues interact with ligands presented by other cells and the extracellular matrix (ECM), so it will likely be beneficial to present both cell-associated and ECM-derived ligands. A number of investigators have incorporated cell-membrane-associated ligands within fluid surfaces, and several groups have shown that these ligands cluster beneath the cells. However, few studies have investigated cell adhesion to ECM-derived ligands in fluid surfaces. Fibronectin is an important ECM component in many tissues, including the hematopoietic stem cell niche. We examined the adhesion of the M07e and THP-1 hematopoietic progenitor cell lines to fibronectin-derived peptide ligands for the α5β 1 (cyclic and linear RGD) and α4β1 (cyclic LDV) integrins as well as the heparin-binding domain (HBD) presented as lipopeptides in fluid and gel SLMs. M07e cells adhered more avidly than THP-1 cells to all of the lipopeptides in fluid and gel surfaces. The adhesion of both cell lines to all peptides was less avid in fluid versus gel SLMs. Adhesion to cyclic LDV (cLDV) and cRGD was similar on gel SLMs for both cell fines. In contrast, adhesion to cLDV was less extensive than to cRGD in fluid SLMs, especially for M07e cells. Adhesion to linear RGD was less avid than to cRGD or cLDV and decreased to a greater extent in fluid SLMs. Human aortic endothelial cells adhered to cRGD in fluid SLMs and remained viable for at least 24 h but did not spread. We also showed additive THP-1 cell adhesion to cLDV and linear RGD lipopeptides presented in a fluid SLM. Although DOPC (dioleoyl phosphatidyl choline) SLMs are not sufficiently stable for long-term cell culture studies, our results and those of others suggest that fluid SLMs are likely to be useful for presenting multiple ligands and for mimicking short-term interactions in the stem cell niche.

Original languageEnglish (US)
Pages (from-to)2994-3002
Number of pages9
JournalLangmuir
Volume25
Issue number5
DOIs
StatePublished - Mar 3 2009

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Effects of supported lipid monolayer fluidity on the adhesion of hematopoietic progenitor cell lines to fibronectin-derived peptide ligands for α5β1 and α4β1 integrins'. Together they form a unique fingerprint.

Cite this