TY - JOUR
T1 - Efficient computation of higher-order variational integrators in robotic simulation and trajectory optimization
AU - Fan, Taosha
AU - Schultz, Jarvis
AU - Murphey, Todd
N1 - Publisher Copyright:
Copyright © 2019, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/4/29
Y1 - 2019/4/29
N2 - This paper addresses the problem of efficiently computing higherorder variational integrators in simulation and trajectory optimization of mechanical systems as those often found in robotic applications. We develop O(n) algorithms to evaluate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction for solving the DEL equations, which results in linear-time variational integrators of arbitrarily high order. To our knowledge, no linear-time higher-order variational or even implicit integrators have been developed before. Moreover, an O(n2) algorithm to linearize the DEL equations is presented, which is useful for trajectory optimization. These proposed algorithms eliminate the bottleneck of implementing higher-order variational integrators in simulation and trajectory optimization of complex robotic systems. The efficacy of this paper is validated through comparison with existing methods, and implementation on various robotic systems-including trajectory optimization of the Spring Flamingo robot, the LittleDog robot and the Atlas robot. The results illustrate that the same integrator can be used for simulation and trajectory optimization in robotics, preserving mechanical properties while achieving good scalability and accuracy.
AB - This paper addresses the problem of efficiently computing higherorder variational integrators in simulation and trajectory optimization of mechanical systems as those often found in robotic applications. We develop O(n) algorithms to evaluate the discrete Euler-Lagrange (DEL) equations and compute the Newton direction for solving the DEL equations, which results in linear-time variational integrators of arbitrarily high order. To our knowledge, no linear-time higher-order variational or even implicit integrators have been developed before. Moreover, an O(n2) algorithm to linearize the DEL equations is presented, which is useful for trajectory optimization. These proposed algorithms eliminate the bottleneck of implementing higher-order variational integrators in simulation and trajectory optimization of complex robotic systems. The efficacy of this paper is validated through comparison with existing methods, and implementation on various robotic systems-including trajectory optimization of the Spring Flamingo robot, the LittleDog robot and the Atlas robot. The results illustrate that the same integrator can be used for simulation and trajectory optimization in robotics, preserving mechanical properties while achieving good scalability and accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85095197539&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095197539&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85095197539
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
ER -