Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi

D. M. Freymann, M. A. Wenck, J. C. Engel, J. Feng, P. J. Focia, A. E. Eakin, S. P. Craig

Research output: Contribution to journalArticlepeer-review

65 Scopus citations


Background: Currently, only two drugs are recommended for treatment of infection with Trypanosoma cruzi, the etiologic agent of Chagas' disease. These compounds kill the trypomastigote forms of the parasite circulating in the bloodstream, but are relatively ineffective against the intracellular stage of the parasite life cycle. Neither drug is approved by the FDA for use in the US. The hypoxanthine phosphoribosyltransferase (HPRT) from T. cruzi is a possible new target for antiparasite chemotherapy. The crystal structure of the HPRT in a conformation approximating the transition state reveals a closed active site that provides a well-defined target for computational structure-based drug discovery. Results: A flexible ligand docking program incorporating a desolvation correction was used to screen the Available Chemicals Directory for inhibitors targeted to the closed conformation of the trypanosomal HPRT. Of 22 potential inhibitors identified, acquired and tested, 16 yielded Ki's between 0.5 and 17 μM versus the substrate phosphoribosylpyrophosphate. Surprisingly, three of eight compounds tested were effective in inhibiting the growth of parasites in infected mammalian cells. Conclusions: This structure-based docking method provided a remarkably efficient path for the identification of inhibitors targeting the closed conformation of the trypanosomal HPRT. The inhibition constants of the lead inhibitors identified are unusually favorable, and the trypanostatic activity of three of the compounds in cell culture suggests that they may provide useful starting points for drug design for the treatment of Chagas' disease.

Original languageEnglish (US)
Pages (from-to)957-968
Number of pages12
JournalChemistry and Biology
Issue number12
StatePublished - 2000


  • Chagas' disease
  • Hypoxanthine phosphoribosyltransferase
  • Structure-based drug design
  • Trypanosoma cruzi

ASJC Scopus subject areas

  • Drug Discovery
  • Molecular Medicine
  • Molecular Biology
  • Biochemistry
  • Clinical Biochemistry
  • Pharmacology


Dive into the research topics of 'Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi'. Together they form a unique fingerprint.

Cite this