Abstract
The Steiner Minimal Tree (SMT) problem is a very important problem in very large scale integrated computer-aided design. Given n points on a plane, an SMT connects these points through some extra points (called Steiner points) to achieve a minimal total length. Even though there exist many heuristic algorithms for this problem, they have either poor performances or expensive running time. This paper records an implementation of an efficient SMT algorithm that has a worst case running time of O(n log n) and a performance close to that of the Iterated 1-Steiner algorithm. The algorithm efficiently combines Borah et al.'s edge substitute concept with Zhou et al.'s spanning graph. Extensive experimental studies are conducted to compare it with other programs.
Original language | English (US) |
---|---|
Pages (from-to) | 704-710 |
Number of pages | 7 |
Journal | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - May 2004 |
Keywords
- Graph algorithms
- Routing
- Steiner tree
ASJC Scopus subject areas
- Software
- Computer Graphics and Computer-Aided Design
- Electrical and Electronic Engineering