TY - JOUR
T1 - Electrically Conductive Metallomacrocyclic Assemblies. High-Resolution Solid-State NMR Spectroscopy as a Probe of Local Architecture and Electronic Structure in Phthalocyanine Molecular and Macromolecular “Metals”
AU - Toscano, Paul J.
AU - Marks, Tobin J.
PY - 1986/1/1
Y1 - 1986/1/1
N2 - This contribution reports a high-resolution solid-state CPMAS study of the low-dimensional phthalocyanine (Pc) conductors Ni(Pc)I, H2(Pc)I, (X = BF4, PF6, 0.35), and (X = BF4, PF6, SbF6, z 0.33), as well as of the precursors Ni(Pc), H2(Pc), and For the partially oxidized materials, large, locally resolved 13C-conduction electron Knight shifts with dispersions as large as 400 ppm and multiplicities in accord with crystallographic site symmetries are observed. By using Ni(Pc)I selectively labeled with 13C at the 1,1’ skeletal positions and with 2H at the 4,4’ hydrogen atom positions, along with dipole dephasing techniques, it is possible to completely and unambiguously assign the CPMAS spectrum. From this information is obtained a map of the conduction electron hyperfine interaction about the carbon framework of the macrocycle. In Ni(Pc)I, the ratios of the 1,1’ to the 2,2’ 13C spin-lattice relaxation times conform approximately to the Korringa relationship at room temperature. For the partially oxidized phthalocyanine series as a whole, a linear relationship is observed between the individual 1,1’ and 2,2’ 13C Knight shifts and the corresponding Pauli-like magnetic susceptibilities.
AB - This contribution reports a high-resolution solid-state CPMAS study of the low-dimensional phthalocyanine (Pc) conductors Ni(Pc)I, H2(Pc)I, (X = BF4, PF6, 0.35), and (X = BF4, PF6, SbF6, z 0.33), as well as of the precursors Ni(Pc), H2(Pc), and For the partially oxidized materials, large, locally resolved 13C-conduction electron Knight shifts with dispersions as large as 400 ppm and multiplicities in accord with crystallographic site symmetries are observed. By using Ni(Pc)I selectively labeled with 13C at the 1,1’ skeletal positions and with 2H at the 4,4’ hydrogen atom positions, along with dipole dephasing techniques, it is possible to completely and unambiguously assign the CPMAS spectrum. From this information is obtained a map of the conduction electron hyperfine interaction about the carbon framework of the macrocycle. In Ni(Pc)I, the ratios of the 1,1’ to the 2,2’ 13C spin-lattice relaxation times conform approximately to the Korringa relationship at room temperature. For the partially oxidized phthalocyanine series as a whole, a linear relationship is observed between the individual 1,1’ and 2,2’ 13C Knight shifts and the corresponding Pauli-like magnetic susceptibilities.
UR - http://www.scopus.com/inward/record.url?scp=0001115999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001115999&partnerID=8YFLogxK
U2 - 10.1021/ja00263a013
DO - 10.1021/ja00263a013
M3 - Article
C2 - 22175458
AN - SCOPUS:0001115999
SN - 0002-7863
VL - 108
SP - 437
EP - 444
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 3
ER -