Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction

Hongliang Chen, Feng Jiang, Chen Hu, Yang Jiao, Su Chen, Yunyan Qiu, Ping Zhou, Long Zhang, Kang Cai, Bo Song, Xiao Yang Chen, Xingang Zhao, Michael R. Wasielewski, Hong Guo, Wenjing Hong, J. Fraser Stoddart*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.

Original languageEnglish (US)
Pages (from-to)8476-8487
Number of pages12
JournalJournal of the American Chemical Society
Volume143
Issue number22
DOIs
StatePublished - Jun 9 2021

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction'. Together they form a unique fingerprint.

Cite this