Abstract
Quantum yields for thymine photodimerization (φTT) have been determined for a series of short DNA single-strand and base-paired hairpin structures possessing a single thymine-thymine step with flanking purines. Values of φTT are strongly dependent upon the oxidation potential of the flanking purine, decreasing in the order: inosine > adenine > guanine > deazaguanine. The dependence of φTT on the ionization potential of the flanking purine is more pronounced when the purine of lower oxidation potential is located at the 5′- versus 3′-position in either a single strand or a hairpin. Molecular dynamics simulations for hairpin structures indicate that the TT step is π-stacked with both the 5′ and 3′ purine, but that there is little π-stacking with either purine in single-strand structures. The observation of moderately intense long-wavelength UV absorption features for hairpins having 5′-Z or G flanking purines suggests that excitation of ground state donor-acceptor complexes may account for more extensive quenching of dimerization by 5′- versus 3′-purines. The "purine effect" on φTT is attributed to a combination of ground state conformation, ground state electron donor-acceptor interactions, and excited state exciplex formation.
Original language | English (US) |
---|---|
Pages (from-to) | 20793-20798 |
Number of pages | 6 |
Journal | Journal of the American Chemical Society |
Volume | 133 |
Issue number | 51 |
DOIs | |
State | Published - Dec 28 2011 |
ASJC Scopus subject areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry