Electronic Processes within Quantum Dot-Molecule Complexes

Rachel D. Harris, Stephanie Bettis Homan, Mohamad Kodaimati, Chen He, Alexander B. Nepomnyashchii, Nathaniel K. Swenson, Shichen Lian, Raul Calzada, Emily A. Weiss*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

158 Scopus citations


The subject of this review is the colloidal quantum dot (QD) and specifically the interaction of the QD with proximate molecules. It covers various functions of these molecules, including (i) ligands for the QDs, coupled electronically or vibrationally to localized surface states or to the delocalized states of the QD core, (ii) energy or electron donors or acceptors for the QDs, and (iii) structural components of QD assemblies that dictate QD-QD or QD-molecule interactions. Research on interactions of ligands with colloidal QDs has revealed that ligands determine not only the excited state dynamics of the QD but also, in some cases, its ground state electronic structure. Specifically, the article discusses (i) measurement of the electronic structure of colloidal QDs and the influence of their surface chemistry, in particular, dipolar ligands and exciton-delocalizing ligands, on their electronic energies; (ii) the role of molecules in interfacial electron and energy transfer processes involving QDs, including electron-to-vibrational energy transfer and the use of the ligand shell of a QD as a semipermeable membrane that gates its redox activity; and (iii) a particular application of colloidal QDs, photoredox catalysis, which exploits the combination of the electronic structure of the QD core and the chemistry at its surface to use the energy of the QD excited state to drive chemical reactions.

Original languageEnglish (US)
Pages (from-to)12865-12919
Number of pages55
JournalChemical Reviews
Issue number21
StatePublished - Nov 9 2016

ASJC Scopus subject areas

  • Chemistry(all)


Dive into the research topics of 'Electronic Processes within Quantum Dot-Molecule Complexes'. Together they form a unique fingerprint.

Cite this