TY - JOUR
T1 - Electronic structure and transport properties of doped PbSe
AU - Peng, Haowei
AU - Song, Jung Hwan
AU - Kanatzidis, M. G.
AU - Freeman, Arthur J.
PY - 2011/9/13
Y1 - 2011/9/13
N2 - Understanding the electronic structure and transport properties of doped PbSe for its thermoelectric applications is an urgent need. Using a first-principles approach, we first explore the band structures of PbSe doped with a series of impurities, including cation-site substitutional impurities (Na, K, Rb; Mg, Ca, Sr; Cu, Ag, Au; Zn, Cd, Hg; Ga, In, Tl; Ge, Sn; As, Sb, Bi) and anion-site substitutional impurities (P, As, Sb; O, S, Te). Then we calculate the density of states (DOS) difference between the doped samples and pure host sample, which is a useful quantity to recognize the possibility of improving transport properties. The exhibited chemical trends and the nature of the impurity states are well explained with a simplified linear combination of atomic orbitals (LCAO) picture. Finally, we calculate the transport properties of these doped systems within the framework of Boltzmann theory and constant relaxation time approximation. Typical competing behavior between the electrical conductivity and Seebeck coefficient is exhibited, and a significant enhancement of thermoelectric power factor is found in the cation-site Au-doped p-type samples, and cation-site As-doped n-type samples.
AB - Understanding the electronic structure and transport properties of doped PbSe for its thermoelectric applications is an urgent need. Using a first-principles approach, we first explore the band structures of PbSe doped with a series of impurities, including cation-site substitutional impurities (Na, K, Rb; Mg, Ca, Sr; Cu, Ag, Au; Zn, Cd, Hg; Ga, In, Tl; Ge, Sn; As, Sb, Bi) and anion-site substitutional impurities (P, As, Sb; O, S, Te). Then we calculate the density of states (DOS) difference between the doped samples and pure host sample, which is a useful quantity to recognize the possibility of improving transport properties. The exhibited chemical trends and the nature of the impurity states are well explained with a simplified linear combination of atomic orbitals (LCAO) picture. Finally, we calculate the transport properties of these doped systems within the framework of Boltzmann theory and constant relaxation time approximation. Typical competing behavior between the electrical conductivity and Seebeck coefficient is exhibited, and a significant enhancement of thermoelectric power factor is found in the cation-site Au-doped p-type samples, and cation-site As-doped n-type samples.
UR - http://www.scopus.com/inward/record.url?scp=80053913271&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053913271&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.84.125207
DO - 10.1103/PhysRevB.84.125207
M3 - Article
AN - SCOPUS:80053913271
SN - 1098-0121
VL - 84
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 12
M1 - 125207
ER -