Electronic structure, spin polarization and high critical fields in Chevrel compounds

T. Jarlborg*, A. J. Freeman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Results are presented of an extensive theoretical study of the origin of high field superconductivity and/or magnetism in a number of Chevrel phase ternary compounds, MMo6X8 (with M=Sn, Eu, Gd and X=S and/or Se) based on self-consistent linear muffin-tin orbital (LMTO) energy band calculations using the local density approach (Hedin et al. exchange correlation) for the paramagnetic structures and local spin density formalism (Gunnarsson and Lundqvist) for the ferromagnetic structures. All electrons and all 15 atoms/cell are included with the core electrons (including the 4f's) recalculated in each iteration in a fully relativistic representation and the conduction electrons treated semirelativistically (all relativistic terms except spin-orbit). Superconductivity is found to be due to the high Mo d-band density of states (DOS) at EF resulting from the unusual large charge transfer of Mo electrons to the chalcogen sites. There is also a large charge transfer from the metal site to the cluster (≈2 electrons in Sn and Eu) giving essentially no occupied conduction bands, for example, at the Eu site and a divalent ion isomer shift in very good agreement with the experiments of Dunlap et al. The conduction-electron DOS at the Eu site is found to be reduced by an order of magnitude from its metallic state value - in close agreement with their spin - lattice relaxation rate measurements. This low conduction-electron DOS yields very weak coupling of the 4f electrons to the conduction electrons and only a very weak Ruderman-Kittel-Kasuya-Yosida magnetic interaction showing why all the Chevrel rare-earth compounds - except Ce and Eu - are superconducting despite their having large local magnetic moments. The unusually high upper critical fields, Hc2, in these materials is found to be due to the unusully flat energy bands near FF. The ferromagnetic (spin polarized) results for the Eu- and Gd-compounds show a net small but positive magnetic moment on the metal site and a small but negative induced spin magnetic moment on the Mo site in the Eu compound. Fermi-contact contributions to the hyperfine field are calculated and found to be in good agreement with the Eu Mössbauer results and the negative NMR Knights shift results of Fradin et al. These results demonstrate theoretically for the first time the validity of the Fischer et al. and Fradin et al. conclusion that the Jaccarino-Peter mechanism is responsible for the large increase in the Hc2 when large concentrations of Eu magnetic impurities are substituted in SnMo6S8. Finally, calculated Stoner factors for the paramegnetic phase and spin magnetization densities for the ferromagnetic phase are used to discuss qualitatively the origin of the different behavior observed for GdMo6S8 and EuMo6S8.

Original languageEnglish (US)
Pages (from-to)135-151
Number of pages17
JournalJournal of Magnetism and Magnetic Materials
Issue number2
StatePublished - May 1982

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Electronic structure, spin polarization and high critical fields in Chevrel compounds'. Together they form a unique fingerprint.

Cite this