Abstract
Although sulfate-reducing prokaryotes have long been studied as agents of metals bioremediation, impacts of long-term metals exposure on biologically mediated sulfur cycling in natural systems remains poorly understood. The effects of long-term exposure to metal stress on the freshwater sulfur cycle were studied, with a focus on biologic sulfate reduction using a combination of microbial and chemical methods. To examine the effects after decades of adaptation time, a field-based experiment was conducted using multiple study sites in a natural system historically impacted by a nearby zinc smelter (Lake DePue, Illinois). Rates were highest at the most metals-contaminated sites (∼35 μmol/cm3/day) and decreased with decreased pore water zinc and arsenic contamination levels, while other environmental characteristics (i.e., pH, nutrient concentrations and physical properties) showed little between-site variation. Correlations were established using an artificial neural network to evaluate potentially non-linear relationships between sulfate reduction rates (SRR) and measured environmental variables. SRR in Lake DePue were up to 50 times higher than rates previously reported for lake sediments and the chemical speciation of Zn was dominated by the presence of ZnS as shown by X-ray Absorption Spectroscopy (XAS). These results suggest that long-term metal stress of natural systems might alter the biogeochemical cycling of sulfur by contributing to higher rates of sulfate reduction.
Original language | English (US) |
---|---|
Article number | G04037 |
Journal | Journal of Geophysical Research: Biogeosciences |
Volume | 113 |
Issue number | 4 |
DOIs | |
State | Published - Dec 28 2008 |
ASJC Scopus subject areas
- Geophysics
- Oceanography
- Forestry
- Aquatic Science
- Ecology
- Water Science and Technology
- Soil Science
- Geochemistry and Petrology
- Earth-Surface Processes
- Atmospheric Science
- Space and Planetary Science
- Earth and Planetary Sciences (miscellaneous)
- Palaeontology