Eliminating the Tg-confinement and fragility-confinement effects in poly(4-methylstyrene) films by incorporation of 3 mol % 2-ethylheyxl acrylate comonomer

Sergio Serna, Tong Wang, John M. Torkelson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Nanoconfined poly(4-methylstyrene) [P(4-MS)] films exhibit reductions in glass transition temperature (Tg) relative to bulk Tg (Tg,bulk). Ellipsometry reveals that 15-nm-thick P(4-MS) films supported on silicon exhibit Tg − Tg,bulk = − 15 °C. P(4-MS) films also exhibit fragility-confinement effects; fragility decreases ∼60% in going from bulk to a 20-nm-thick film. Previous research found that incorporating 2-6 mol % 2-ethylhexyl acrylate (EHA) comonomer in styrene-based random copolymers eliminates Tg- and fragility-confinement effects in polystyrene. Here, we demonstrate that incorporating 3 mol % EHA in a 4-MS-based random copolymer, 97/3 P(4-MS/EHA), eliminates the Tg- and fragility-confinement effects. The invariance of fragility with nanoconfinement of 97/3 P(4-MS/EHA) films, hypothesized to originate from the interdigitation of ethylhexyl groups, indicates that the presence of EHA prevents the free surface from perturbing chain packing and the cooperative mobility associated with Tg. This method of eliminating confinement effects is advantageous as it relies on the simplest of polymerization methods and neat copolymer only slightly altered in composition from homopolymer. We also investigated whether we could eliminate the Tg-confinement effect with low levels of 2-ethylhexyl methacrylate (EHMA) in 4-MS-based or styrene-based copolymers. Although EHMA is structurally nearly identical to EHA, 4-MS-based and styrene-based copolymers incorporating 4 mol % EHMA exhibit Tg-confinement effects similar to P(4-MS) and polystyrene. These results support the special character of EHA in eliminating confinement effects originating at free surfaces.

Original languageEnglish (US)
Article number034903
JournalJournal of Chemical Physics
Volume160
Issue number3
DOIs
StatePublished - Jan 21 2024

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Eliminating the Tg-confinement and fragility-confinement effects in poly(4-methylstyrene) films by incorporation of 3 mol % 2-ethylheyxl acrylate comonomer'. Together they form a unique fingerprint.

Cite this