Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin

Alissa M. Weaver, Isa M. Hussaini, Andrew Mazar, Jack Henkin, Steven L. Gonias*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

Low density lipoprotein receptor-related protein (LRP) mediates the endocytosis of diverse ligands, including urokinase plasminogen activator (uPA) and its receptor, uPAR, which have been implicated in cellular migration. The purpose of this study was to determine whether LRP affects cellular migration. Murine embryonic fibroblasts (MEF) that are LRP-deficient due to targeted gene disruption and exotoxin selection (MEF-2), heterozygous fibroblasts (PEA-10), and wild-type fibroblasts (MEF-1) were compared. When cultures were denuded of cells in a 1-mm-wide strip, all three cell types migrated into the denuded area. The MEF-2 cells migrated nearly twice as rapidly as the MEF-1 cells or PEA-10 cells. The difference in migration velocity was duplicated in culture wells that were precoated with serum or vitronectin and partially duplicated in wells coated with fibronectin but not in wells coated with type I collagen or Matrigel. uPA was detected in MEF-2 conditioned medium (CM) at a concentration of 0.30 ± 0.02 nM, which was 13- fold higher than the level detected in MEF-1 CM or PEA-10 CM, suggesting one potential mechanism for the enhanced migration of MEF-2 cells. uPAR was also increased on MEF-2 cells by 4-5-fold, as determined by PI-PLC release, and by 2.5-fold, as determined by a uPA/uPAR activity assay. Mannosamine treatment, which down-regulates cell-surface uPAR, decreased MEF-2 migration by 40% without significantly affecting MEF-1 migration. MEF-2 CM, which is uPA- rich, increased the rate of MEF-1 migration, and MEF-1 CM did not. These studies demonstrate alterations in cellular migration and in the activity of the uPA/uPAR system which accompany complete deficiency of LRP expression in fibroblasts. We propose that uPA and uPAR form an autocrine loop for promoting fibroblast migration and that LRP counteracts the activity of this system.

Original languageEnglish (US)
Pages (from-to)14372-14379
Number of pages8
JournalJournal of Biological Chemistry
Volume272
Issue number22
DOIs
StatePublished - May 30 1997

Funding

ASJC Scopus subject areas

  • Molecular Biology
  • Biochemistry
  • Cell Biology

Fingerprint

Dive into the research topics of 'Embryonic fibroblasts that are genetically deficient in low density lipoprotein receptor-related protein demonstrate increased activity of the urokinase receptor system and accelerated migration on vitronectin'. Together they form a unique fingerprint.

Cite this