EMG pattern recognition control of multifunctional prostheses by transradial amputees

Guanglin Li*, Todd A Kuiken

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Scopus citations

Abstract

Electromyogram (EMG) pattern recognition approach has been investigated widely with able-bodied subjects for control of multifunctional prostheses and verified with high performance in identifying different movements. However, it remains unclear whether transradial amputees can achieve similar performance. In this study, we investigated the performance of EMG pattern recognition control of multifunctional transradial prostheses in five subjects with unilateral below-elbow amputation. Testing results on both residual and intact arms showed that the average classification error (21%) of amputated arms for ten motion classes (four wrist movements, six hand grasps) and a 'no movement' class over all five subjects was about 15% higher than that of intact arms. For six basic motion classes (wrist flexion/extension, wrist pronation/supination, and hand open/close), the average classification error over all five subjects was about 7% from residual arms, which was similar to the result from intact arms (6%). Only six optimal electrode channels might be needed to provide an excellent myoelectric control system for the six basic movements. These results suggest that the muscles in the residual forearm may produce sufficient myoelectric information to allow the six basic motion control, but insufficient information for more hand functions with fine finger movements.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages6914-6917
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - Jan 1 2009
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'EMG pattern recognition control of multifunctional prostheses by transradial amputees'. Together they form a unique fingerprint.

Cite this