Enabling integrated material and product design under uncertainty through stochastic constitutive relations

M. Steven Greene, Yu Liu, Wei Chen*, Wing Kam Liu, Hong Zhong Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a computational framework that mathematically propagates material microstructure uncertainties to coarser system resolutions for use in multiscale design frameworks. The computational framework uses a homogenized stochastic constitutive relation that links microstructure uncertainty with stochastic material properties. The stochastic constitutive relation formulated in this work serves as the critical link between the material and product domains in integrated material and product design. Ubiquitous fine resolution uncertainty sources influencing prediction of material properties based on their structures are categorized, and stochastic cell averaging is achieved by two advanced uncertainty quantification methods: random process polynomial chaos expansion and statistical copula functions. Both methods confront the mathematical difficulty in randomizing constitutive law parameters by capturing the marked correlation among them often seen in complex materials, thus the results proffer a more accurate probabilistic estimation of constitutive material behavior. The method put forth in this research, though quite general, is applied to a plastic, high strength steel alloy for demonstration.

Original languageEnglish (US)
Title of host publicationASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Pages1109-1119
Number of pages11
EditionPARTS A AND B
DOIs
StatePublished - 2010
EventASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010 - Montreal, QC, Canada
Duration: Aug 15 2010Aug 18 2010

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
NumberPARTS A AND B
Volume1

Other

OtherASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2010
Country/TerritoryCanada
CityMontreal, QC
Period8/15/108/18/10

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Enabling integrated material and product design under uncertainty through stochastic constitutive relations'. Together they form a unique fingerprint.

Cite this