Endocytic deficiency induced by ITSN-1s knockdown alters the Smad2/3-Erk1/2 signaling balance downstream of Alk5

Cristina Bardita, Dan N. Predescu, Fei Sha, Monal Patel, Ganesh Balaji, Sanda A. Predescu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Recently, we demonstrated in cultured endothelial cells and in vivo that deficiency of an isoform of intersectin-1, ITSN-1s, impairs caveolae and clathrin-mediated endocytosis and functionally upregulates compensatory pathways and their morphological carriers (i.e. enlarged endocytic structures, membranous rings or tubules) that are normally underrepresented. We now show that these endocytic structures internalize the broadly expressed transforming growth factor β receptor I (TGFβ-RI or TGFBR1), also known as Alk5, leading to its ubiquitylation and degradation. Moreover, the apoptotic or activated vascular cells of the ITSN-1sknockdown mice release Alk5-bearing microparticles to the systemic circulation. These interact with and transfer Alk5 to endocytosis-deficient endothelial cells, resulting in lung endothelial cell survival and phenotypic alteration towards proliferation through activation of Erk1 and Erk2 (also known as MAPK3 and MAPK1, respectively). We also show that non-productive assembly of the Alk5-Smad-SARA (Smad anchor for receptor activation, also known as ZFYVE9) signaling complex and preferential formation of the Alk5-mSos-Grb2 complex account for Erk1/2 activation downstream of Alk5 and proliferation of pulmonary endothelial cells. Taken together, our studies demonstrate a functional relationship between the intercellular transfer of Alk5 by microparticles and endothelial cell survival and proliferation, and define a novel molecular mechanism for TGFβ and Alk5-dependent Erk1/2MAPK signaling that is significant for proliferative signaling and abnormal growth.

Original languageEnglish (US)
Pages (from-to)1528-1541
Number of pages14
JournalJournal of cell science
Volume128
Issue number8
DOIs
StatePublished - 2015
Externally publishedYes

Keywords

  • Alternative endocytic pathway
  • Microparticle
  • Proliferation

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Endocytic deficiency induced by ITSN-1s knockdown alters the Smad2/3-Erk1/2 signaling balance downstream of Alk5'. Together they form a unique fingerprint.

Cite this