Abstract
Replacement of dead neurons following ischemia, either via enhanced endogenous neurogenesis or stem cell therapy, has long been sought. Unfortunately, while various therapies that enhance neurogenesis or stem cell therapies have proven beneficial in animal models, they have all uniformly failed to truly replace dead neurons in the ischemic core to facilitate long-term recovery. Remarkably, we observe robust repopulation of medium-spiny neurons within the ischemic core of juvenile mice following experimental stroke. Despite extensive neuronal cell death in the injured striatum of both juveniles and adults at acute time points after ischemia (24 h and 7 d), mature newborn neurons replaced lost striatal neurons at 30 d post-ischemia. This neuronal repopulation was found only in juveniles, not adults, and importantly, was accompanied by enhanced post-ischemic behavioral recovery at 30 d. Ablation of neurogenesis using irradiation prevented neuronal replacement and functional recovery in MCAo-injured juvenile mice. In contrast, findings in adults were consistent with previous reports, that newborn neurons failed to mature and died, offering little therapeutic potential. These data provide support for neuronal replacement and consequent functional recovery following ischemic stroke and new targets in the development of novel therapies to treat stroke.
Original language | English (US) |
---|---|
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Neuroscience |
Volume | 380 |
DOIs | |
State | Published - Jun 1 2018 |
Funding
This work was supported by the American Heart Association (Grant no. 16SDG30320001 ), the National Institute of Neurological Disorders and Stroke (Grant no. RO1NS092645 ), and the Henrietta B. and Frederick H. Bugher Foundation (Grant no. 14BFSC17690001 ) . Imaging experiments were performed in the University of Colorado Anschutz Medical Campus Advance Light Microscopy Core supported in part by the National Center for Advancing Translational Sciences at the National Institutes of Health , Colorado Translational Sciences Institute (Grant no. UL1 TR001082 ). This work was supported by the American Heart Association (Grant no. 16SDG30320001), the National Institute of Neurological Disorders and Stroke (Grant no. RO1NS092645), and the Henrietta B. and Frederick H. Bugher Foundation (Grant no. 14BFSC17690001). Imaging experiments were performed in the University of Colorado Anschutz Medical Campus Advance Light Microscopy Core supported in part by the National Center for Advancing Translational Sciences at the National Institutes of Health, Colorado Translational Sciences Institute (Grant no. UL1 TR001082).
Keywords
- cerebral ischemia
- endogenous recovery
- neural stem cells
- neurogenesis
- neuron replacement
ASJC Scopus subject areas
- General Neuroscience