Energetics during robot-assisted training predicts recovery in stroke

Zachary A. Wright, James L. Patton, Felix Huang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Clinical investigators have asserted patients should be active participants in the therapy process in stroke rehabilitation. While robotics introduces new tools for measurement and treatment of motor impairments, it also presents challenges for evaluating how much a patient contributes to observed movements during training. Our approach employs established methods of inverse dynamics combined with measurements of human motion and interaction forces between the human and robot. Here, we investigated whether measures of patient active involvement predict the level of upper limb recovery due to robot-assisted therapy. Stroke survivors (n=11) completed 'exploration' training with customizable forces that increased their velocities (i.e., negative damping). While our results showed a mild trend between mechanical work during training and expanded velocity capability (Pearson r = 0.57), we found significant correlations with the amount of positive work (i.e., propulsion; r = 0.77), but not negative work (i.e., braking; r = 0.41). This work supports robotic tools that encourage more positive work.

Original languageEnglish (US)
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2507-2510
Number of pages4
ISBN (Electronic)9781538636466
DOIs
StatePublished - Oct 26 2018
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Other

Other40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
CountryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Energetics during robot-assisted training predicts recovery in stroke'. Together they form a unique fingerprint.

Cite this