Abstract
Neural networks have been increasingly applied to control in learning-enabled cyber-physical systems (LE-CPSs) and demonstrated great promises in improving system performance and efficiency, as well as reducing the need for complex physical models. However, the lack of safety guarantees for such neural network based controllers has significantly impeded their adoption in safety-critical CPSs. In this work, we propose a controller adaptation approach that automatically switches among multiple controllers, including neural network controllers, to guarantee system safety and improve energy efficiency. Our approach includes two key components based on formal methods and machine learning. First, we approximate each controller with a Bernstein-polynomial based hybrid system model under bounded disturbance, and compute a safe invariant set for each controller based on its corresponding hybrid system. Intuitively, the invariant set of a controller defines the state space where the system can always remain safe under its control. The union of the controllers' invariants sets then define a safe adaptation space that is larger than (or equal to) that of each controller. Second, we develop a deep reinforcement learning method to learn a controller switching strategy for reducing the control/actuation energy cost, while with the help of a safety guard rule, ensuring that the system stays within the safe space. Experiments on a linear adaptive cruise control system and a non-linear Van der Pol's oscillator demonstrate the effectiveness of our approach on energy saving and safety enhancement.
Original language | English (US) |
---|---|
Article number | 9256732 |
Journal | IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD |
Volume | 2020-November |
DOIs | |
State | Published - Nov 2 2020 |
Event | 39th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2020 - Virtual, San Diego, United States Duration: Nov 2 2020 → Nov 5 2020 |
Funding
We would like to thank Bai Xue (Institute of Software CAS, China) for sharing and explaining the code of his invariant computation tool. We gratefully acknowledge the support from NSF grants 1834701, 1834324,1839511, 1724341, and ONR grant NOOOI4-19-1-2496.
Keywords
- LE-CPS
- Safety guarantees
- adaptation
- invariant
- neural network
ASJC Scopus subject areas
- Software
- Computer Science Applications
- Computer Graphics and Computer-Aided Design