Energy landscapes and functions of supramolecular systems

Faifan Tantakitti, Job Boekhoven, Xin Wang, Roman V. Kazantsev, Tao Yu, Jiahe Li, Ellen Zhuang, Roya Zandi, Julia H. Ortony, Christina J. Newcomb, Liam C. Palmer, Gajendra S. Shekhawat, Monica Olvera De La Cruz, George C. Schatz, Samuel I. Stupp*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

305 Scopus citations


By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function.

Original languageEnglish (US)
Pages (from-to)469-476
Number of pages8
JournalNature materials
Issue number4
StatePublished - Apr 1 2016

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Chemistry(all)
  • Materials Science(all)


Dive into the research topics of 'Energy landscapes and functions of supramolecular systems'. Together they form a unique fingerprint.

Cite this