Engineering Symmetry-Breaking Nanocrescent Arrays for Nanolasing

Yuanhai Lin, Danqing Wang, Jingtian Hu, Jianxi Liu, Weijia Wang, Jun Guan, Richard D. Schaller, Teri W. Odom*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


This paper describes a symmetry-breaking plasmonic lattice structure that can support narrow resonances as optical feedback for nanolasing. A scalable technique is developed to fabricate nanocrescent arrays with low-structural symmetry unit cells to achieve in-plane quadrupolar lattice plasmon modes. These lattice plasmons with extremely narrow linewidths preserve nonzero net dipole moments under normal excitation. Ultrafast band-edge lasing can be switched on and off by changing the polarization of the incident pump light. The quadrupolar lattice plasmon lasing process is simulated with a semi-quantum model and the sharp tips on the nanocrescents accelerate the lasing buildup process and enhance stimulated emission.

Original languageEnglish (US)
Article number1904157
JournalAdvanced Functional Materials
Issue number42
StatePublished - Oct 1 2019


  • plasmon lasing
  • plasmonic nanocrescents
  • quadrupolar lattice plasmons
  • symmetry breaking
  • tip effects

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • General Chemistry
  • General Materials Science
  • Electrochemistry
  • Biomaterials


Dive into the research topics of 'Engineering Symmetry-Breaking Nanocrescent Arrays for Nanolasing'. Together they form a unique fingerprint.

Cite this