Enhanced Exciton Quantum Coherence in Single CsPbBr3Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy

Federica Ricci, Veronica Marougail, Oleg Varnavski, Yue Wu, Suyog Padgaonkar, Shawn Irgen-Gioro, Emily A. Weiss, Theodore Goodson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Cesium-halide perovskite quantum dots (QDs) have gained tremendous interest as quantum emitters in quantum information processing applications due to their optical and photophysical properties. However, engineering excitonic states in quantum dots requires a deep knowledge of the coherent dynamics of their excitons at a single-particle level. Here, we use femtosecond time-resolved two-photon near-field scanning optical microscopy (NSOM) to reveal coherences involving a single cesium lead bromide perovskite QD (CsPbBr3) at room temperature. We show that, compared to other nonperovskite nanoparticles, the electronic coherence on a single perovskite QD has a relatively long lifetime of ca. 150 fs, whereas CdSe QDs have exciton coherence times shorter than 75 fs at room temperature. One possible explanation for the longer coherence time observed for the CsPbBr3 perovskite system is related to the exciton fine structure of these perovskite QDs compared to other nanoparticles. These perovskite QDs exhibit interesting optical properties that differ from those of the traditional QDs including bright triplet exciton states. In fact, due to the small amplitude of the energy gap fluctuations of dipole-allowed triplet states in perovskite QDs, the coherent superposition could be preserved for longer times. Furthermore, single-particle excitation approach implemented in this work allows us to remove effects of heterogeneity that are usually present in ensemble averaging experiments at room temperature. The realization of quantum-mechanical phase-coherence of a charge carrier that can operate at room temperature is an issue of great importance for the potential application of coherent electronic phenomena in electronic and optoelectronic devices. These interesting findings provide further evidence of the great potential of these perovskite QDs as candidates for quantum computing and information processing applications.

Original languageEnglish (US)
Pages (from-to)12955-12965
Number of pages11
JournalACS nano
Issue number8
StatePublished - Aug 24 2021


  • NSOM
  • coherence
  • perovskite
  • quantum dots
  • time-resolved microscopy
  • two-photon absorption

ASJC Scopus subject areas

  • General Materials Science
  • General Engineering
  • General Physics and Astronomy


Dive into the research topics of 'Enhanced Exciton Quantum Coherence in Single CsPbBr3Perovskite Quantum Dots using Femtosecond Two-Photon Near-Field Scanning Optical Microscopy'. Together they form a unique fingerprint.

Cite this