TY - JOUR
T1 - Enhanced mitogenic signaling in skeletal muscle of women with polycystic ovary syndrome
AU - Corbould, Anne
AU - Zhao, Haiyan
AU - Mirzoeva, Salida
AU - Aird, Fraser
AU - Dunaif, Andrea
PY - 2006/3
Y1 - 2006/3
N2 - Insulin resistance in polycystic ovary syndrome (PCOS) results from a postbinding defect in signaling. Insulin receptor and insulin receptor substrate (IRS)-1 serine hyperphosphorylation by an unidentified kinase(s) contributes to this defect. We investigated whether insulin resistance is selective, affecting metabolic but not mitogenic pathways, in skeletal muscle as it is in cultured skin fibroblasts in PCOS. Extracellular signal-regulated kinase (ERK)1/2 activation was increased in skeletal muscle tissue and in cultured myotubes basally and in response to insulin in women with PCOS compared with control women. Mitogen-activated/extracellular signal-regulated kinase kinase (MEK)1/2 was also activated in PCOS, whereas p38 mitogen-activated protein kinase phosphorylation and signaling from the insulin receptor to Grb2 was similar in both groups. The activity of p21Ras was decreased and Raf-1 abundance increased in PCOS, suggesting that altered mitogenic signaling began at this level. MEK1/2 inhibition reduced IRS-1 Ser312 phosphorylation and increased IRS-1 association with the p85 subunit of phosphatidylinositol 3-kinase in both groups. We conclude that in PCOS skeletal muscle, 1) mitogenic signaling is enhanced in vivo and in culture, 2) ERK1/2 activation inhibits association of IRS-1 with p85 via IRS-1 Ser312 phosphorylation, and 3) ERK1/2 activation may play a role in normal feedback of insulin signaling and contribute to resistance to insulin's metabolic actions in PCOS.
AB - Insulin resistance in polycystic ovary syndrome (PCOS) results from a postbinding defect in signaling. Insulin receptor and insulin receptor substrate (IRS)-1 serine hyperphosphorylation by an unidentified kinase(s) contributes to this defect. We investigated whether insulin resistance is selective, affecting metabolic but not mitogenic pathways, in skeletal muscle as it is in cultured skin fibroblasts in PCOS. Extracellular signal-regulated kinase (ERK)1/2 activation was increased in skeletal muscle tissue and in cultured myotubes basally and in response to insulin in women with PCOS compared with control women. Mitogen-activated/extracellular signal-regulated kinase kinase (MEK)1/2 was also activated in PCOS, whereas p38 mitogen-activated protein kinase phosphorylation and signaling from the insulin receptor to Grb2 was similar in both groups. The activity of p21Ras was decreased and Raf-1 abundance increased in PCOS, suggesting that altered mitogenic signaling began at this level. MEK1/2 inhibition reduced IRS-1 Ser312 phosphorylation and increased IRS-1 association with the p85 subunit of phosphatidylinositol 3-kinase in both groups. We conclude that in PCOS skeletal muscle, 1) mitogenic signaling is enhanced in vivo and in culture, 2) ERK1/2 activation inhibits association of IRS-1 with p85 via IRS-1 Ser312 phosphorylation, and 3) ERK1/2 activation may play a role in normal feedback of insulin signaling and contribute to resistance to insulin's metabolic actions in PCOS.
UR - http://www.scopus.com/inward/record.url?scp=33644779914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644779914&partnerID=8YFLogxK
U2 - 10.2337/diabetes.55.03.06.db05-0453
DO - 10.2337/diabetes.55.03.06.db05-0453
M3 - Article
C2 - 16505239
AN - SCOPUS:33644779914
SN - 0012-1797
VL - 55
SP - 751
EP - 759
JO - Diabetes
JF - Diabetes
IS - 3
ER -