Enhancement of Conjugated Polymer Microstructure and Mixed-Conducting Properties via Chalcogenophene Heteroatom Substitution

Bryan D. Paulsen, Dilara Meli, Maximilian Moser, Adam Marks, James F. Ponder, Ruiheng Wu, Emily A. Schafer, Joseph Strzalka, Qingteng Zhang, Iain McCulloch*, Jonathan Rivnay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Heteroatom substitution is a powerful tool to tune the intra- and intermolecular structure of conjugated polymers as well as their resulting optoelectronic and electrochemical properties. A series of oligoethylene glycol bithiophene chalcogenophene polymers (p(g3T2-X)) with systematically varied furan, thiophene, selenophene, and tellurophene comonomers have been synthesized for mixed ionic-electronic conducting applications. Their microstructures have been thoroughly characterized ex situ and in situ with X-ray scattering, and their mixed conducting properties have been probed in electrochemical transistor testbeds. Chalcogenophene heteroatom choice was found to clearly dictate the polymer microstructure (crystallite dimensionality and orientation) and tune mixed conducting properties. Proceeding down Group 16, from O to Se systematically directed the molecular ordering of 2D polymer crystallites from face-on (O) to mixed (S) to edge-on (Se) orientations, with Te driving the polymer to form well-oriented edge-on 3D crystallites. Heteroatom dictated crystallite quality, and orientation tuned relative ionic transport by 2 orders of magnitude. Hole mobility (μhole) and mixed conducting figure of merit (μC*) were each tuned over an order of magnitude depending on heteroatom choice, with the Te-containing polymer reaching μhole = 3.60 cm2 V-1 s-1 and μC* = 483 F cm-1 V-1 s-1, due to improved molecular ordering. Insights from this polymer series highlight target microstructures for enhanced mixed conduction in future conjugated polymers.

Original languageEnglish (US)
Pages (from-to)1818-1830
Number of pages13
JournalChemistry of Materials
Issue number4
StatePublished - Feb 27 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry


Dive into the research topics of 'Enhancement of Conjugated Polymer Microstructure and Mixed-Conducting Properties via Chalcogenophene Heteroatom Substitution'. Together they form a unique fingerprint.

Cite this