Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2

Peng Ji, Senthil Raja Jayapal, Harvey F. Lodish

Research output: Contribution to journalArticlepeer-review

147 Scopus citations

Abstract

Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.

Original languageEnglish (US)
Pages (from-to)314-321
Number of pages8
JournalNature Cell Biology
Volume10
Issue number3
DOIs
StatePublished - Mar 2008

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2'. Together they form a unique fingerprint.

Cite this