TY - JOUR
T1 - Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells
AU - Lorch, Jochen H.
AU - Klessner, Jodi
AU - Park, J. Ken
AU - Getsios, Spiro
AU - Wu, Yvonne L.
AU - Stack, M. Sharon
AU - Green, Kathleen J.
PY - 2004/8/27
Y1 - 2004/8/27
N2 - The epidermal growth factor receptor (EGFR) has been proposed as a key modulator of cadherin-containing intercellular junctions, particularly in tumors that overexpress this tyrosine kinase. Here the EGFR tyrosine kinase inhibitor PKI166 and EGFR blocking antibody C225, both of which are used clinically to treat head and neck cancers, were used to determine the effects of EGFR inhibition on intercellular junction assembly and adhesion in oral squamous cell carcinoma cells. EGFR inhibition resulted in a transition from a fibroblastic morphology to a more epithelial phenotype in cells grown in low calcium; under these conditions cadherin-mediated cell-cell adhesion is normally reduced, and desmosomes are absent. The accumulated levels of desmoglein 2 (Dsg2) and desmocollin 2 increased 1.7-2.0-fold, and both desmosomal cadherin and plaque components were recruited to cell-cell borders. This redistribution was paralleled by an increase in Dsg2 and desmoplakin in the Triton-insoluble cell fraction, suggesting that EGFR blockade promotes desmosome assembly. Importantly, E-cadherin expression and solubility were unchanged. Furthermore, PKI166 blocked tyrosine phosphorylation of Dsg2 and plakoglobin following epidermal growth factor stimulation, whereas no change in phosphorylation was detected for E-cadherin and β-catenin. The increase in Dsg2 protein was in part due to the inhibition of matrix metalloproteinase-dependent proteolysis of this desmosomal cadherin. These morphological and biochemical changes were accompanied by an increase in intercellular adhesion based on functional assays at all calcium concentrations tested. Our results suggest that EGFR inhibition promotes desmosome assembly in oral squamous cell carcinoma cells, resulting in increased cell-cell adhesion.
AB - The epidermal growth factor receptor (EGFR) has been proposed as a key modulator of cadherin-containing intercellular junctions, particularly in tumors that overexpress this tyrosine kinase. Here the EGFR tyrosine kinase inhibitor PKI166 and EGFR blocking antibody C225, both of which are used clinically to treat head and neck cancers, were used to determine the effects of EGFR inhibition on intercellular junction assembly and adhesion in oral squamous cell carcinoma cells. EGFR inhibition resulted in a transition from a fibroblastic morphology to a more epithelial phenotype in cells grown in low calcium; under these conditions cadherin-mediated cell-cell adhesion is normally reduced, and desmosomes are absent. The accumulated levels of desmoglein 2 (Dsg2) and desmocollin 2 increased 1.7-2.0-fold, and both desmosomal cadherin and plaque components were recruited to cell-cell borders. This redistribution was paralleled by an increase in Dsg2 and desmoplakin in the Triton-insoluble cell fraction, suggesting that EGFR blockade promotes desmosome assembly. Importantly, E-cadherin expression and solubility were unchanged. Furthermore, PKI166 blocked tyrosine phosphorylation of Dsg2 and plakoglobin following epidermal growth factor stimulation, whereas no change in phosphorylation was detected for E-cadherin and β-catenin. The increase in Dsg2 protein was in part due to the inhibition of matrix metalloproteinase-dependent proteolysis of this desmosomal cadherin. These morphological and biochemical changes were accompanied by an increase in intercellular adhesion based on functional assays at all calcium concentrations tested. Our results suggest that EGFR inhibition promotes desmosome assembly in oral squamous cell carcinoma cells, resulting in increased cell-cell adhesion.
UR - http://www.scopus.com/inward/record.url?scp=4344680669&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344680669&partnerID=8YFLogxK
U2 - 10.1074/jbc.M405123200
DO - 10.1074/jbc.M405123200
M3 - Article
C2 - 15205458
AN - SCOPUS:4344680669
SN - 0021-9258
VL - 279
SP - 37191
EP - 37200
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 35
ER -