TY - JOUR
T1 - Epithelial cell adhesion to extracellular matrix proteins induces tyrosine phosphorylation of the epstein-barr virus latent membrane protein 2
T2 - A role for C-terminal Src kinase
AU - Scholle, Frank
AU - Longnecker, Richard
AU - Raab-Traub, Nancy
PY - 1999
Y1 - 1999
N2 - The Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2) is expressed in latently EBV-infected B cells, where it forms patches in the plasma membrane and interferes with B-cell receptor signal transduction through dominant-negative effects on protein kinases. LMP2 transcripts are detected in nasopharyngeal carcinoma, an epithelial-cell malignancy. In this study the function of LMP2A in epithelial cells was investigated. LMP2A was found to coprecipitate with protein kinase activities and to become phosphorylated in in vitro kinase assays. Analysis of LMP2A deletion mutants demonstrated that tyrosines implicated in interacting with Src family kinase SH2 domains and the SH2 domain of Csk, as well as the LMP2A immunoreceptor tyrosine-based activation motif, are important for its phosphorylation in epithelial cells. LMP2A tyrosine phosphorylation was triggered by cell adhesion to extracellular-matrix (ECM) proteins. Src family kinases, whose involvement in cell-ECM signaling and LMP2A phosphorylation in B lymphocytes has been well established, were found not to be responsible for LMP2A phosphorylation in epithelial cells. Instead, coexpression of Csk, a negative Src regulator, and LMP2A led to an increase in LMP2A phosphorylation both in nonadherent cells and upon cell adhesion. Csk also phosphorylated LMP2A in vitro. These results suggest that LMP2A has a different role in epithelial cells, where it interacts with cell adhesion-initiated signaling pathways. Although tyrosine phosphorylation of LMP2A occurs in both cell types, different protein kinases seem to be used: Src family kinases in B lymphocytes and Csk in epithelial cells.
AB - The Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2) is expressed in latently EBV-infected B cells, where it forms patches in the plasma membrane and interferes with B-cell receptor signal transduction through dominant-negative effects on protein kinases. LMP2 transcripts are detected in nasopharyngeal carcinoma, an epithelial-cell malignancy. In this study the function of LMP2A in epithelial cells was investigated. LMP2A was found to coprecipitate with protein kinase activities and to become phosphorylated in in vitro kinase assays. Analysis of LMP2A deletion mutants demonstrated that tyrosines implicated in interacting with Src family kinase SH2 domains and the SH2 domain of Csk, as well as the LMP2A immunoreceptor tyrosine-based activation motif, are important for its phosphorylation in epithelial cells. LMP2A tyrosine phosphorylation was triggered by cell adhesion to extracellular-matrix (ECM) proteins. Src family kinases, whose involvement in cell-ECM signaling and LMP2A phosphorylation in B lymphocytes has been well established, were found not to be responsible for LMP2A phosphorylation in epithelial cells. Instead, coexpression of Csk, a negative Src regulator, and LMP2A led to an increase in LMP2A phosphorylation both in nonadherent cells and upon cell adhesion. Csk also phosphorylated LMP2A in vitro. These results suggest that LMP2A has a different role in epithelial cells, where it interacts with cell adhesion-initiated signaling pathways. Although tyrosine phosphorylation of LMP2A occurs in both cell types, different protein kinases seem to be used: Src family kinases in B lymphocytes and Csk in epithelial cells.
UR - http://www.scopus.com/inward/record.url?scp=0032990723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032990723&partnerID=8YFLogxK
U2 - 10.1128/jvi.73.6.4767-4775.1999
DO - 10.1128/jvi.73.6.4767-4775.1999
M3 - Article
C2 - 10233937
AN - SCOPUS:0032990723
SN - 0022-538X
VL - 73
SP - 4767
EP - 4775
JO - Journal of virology
JF - Journal of virology
IS - 6
ER -