Equidistribution on Kuga-Sato varieties of torsion points on CM elliptic curves

Ilya Khayutin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A connected Kuga-Sato variety Wr parameterizes tuples of r points on elliptic curves (with level structure). A special point of Wr is a tuple of torsion points on a CM elliptic curve. A sequence of special points is strict if any CM elliptic curve appears at most finitely many times and no relation between the points in the tuple is satisfied infinitely often. The genus orbit of a special point is the Gal(̅ℚ /ℚab)-orbit. We show that genus orbits of special points in a strict sequence equidistribute in Wr(ℂ), assuming a congruence condition at two fixed primes. A genus orbit can be very sparse in the full Galois orbit. In particular, the number of torsion points on each elliptic curve in a genus orbit is not bounded below by the torsion order. A genus orbit corresponds to a toral packet in an extension of SL2 by a vector representation. These packets also arise in the study by Aka, Einsiedler and Shapira of grids orthogonal to lattice points on the 2-sphere. As an application we establish their joint equidistribution conjecture assuming two split primes.

MSC Codes 11G18, 37A17

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Jul 23 2018
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Equidistribution on Kuga-Sato varieties of torsion points on CM elliptic curves'. Together they form a unique fingerprint.

Cite this