Abstract
People with incomplete spinal cord injury (iSCI) usually show impairments in lateral balance control during walking. Effective interventions for improving balance control are still lacking, probably due to limited understanding of motor learning mechanisms. The objective of this study was to determine how error size and error variability impact the motor learning of lateral balance control during walking in people with iSCI. Fifteen people with iSCI were recruited. A controlled assistance force was applied to the pelvis in the medial-lateral direction using a customized cable-driven robotic system. Participants were tested using 3 conditions, including abrupt, gradual, and varied forces. In each condition, participants walked on a treadmill with no force for 1 min (baseline), with force for 9 min (adaptation), and then with no force for additional 2 min (post-adaptation). The margin of stability at heel contact (MoS_HC) and minimum value moment (MoS_Min) were calculated to compare the learning effect across different conditions. Electromyogram signals from the weaker leg were also collected. Participants showed an increase in MoS_Min (after effect) following force release during the post-adaptation period for all three conditions. Participants showed a faster adaptation and a shorter lasting of after effect in MoS_Min for the varied condition in comparison with the gradual and abrupt force conditions. Increased error variability may facilitate motor learning in lateral balance control during walking in people with iSCI, although a faster learning may induce a shorter lasting of after effect. Error size did not show an impact on the lasting of after effect.
Original language | English (US) |
---|---|
Pages (from-to) | 3221-3234 |
Number of pages | 14 |
Journal | European Journal of Neuroscience |
Volume | 50 |
Issue number | 8 |
DOIs | |
State | Published - Oct 1 2019 |
Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article. This study is supported by National Institutes of Health (NIH) (Grant No. NIH/NICHD, R01HD083314). We thank Mr. Zhenkun Lin for his assistance for data collection. We thank Ms. Jill Landry for editing the manuscript.
Keywords
- error size
- error variability
- lateral balance
- motor adaptation
- pelvis assistance
- spinal cord injury
ASJC Scopus subject areas
- General Neuroscience