TY - JOUR
T1 - Estrogen regulates expression of tumor necrosis factor receptors in breast adipose fibroblasts
AU - Deb, Santanu
AU - Amin, Sanober
AU - Imir, Ayse Gonca
AU - Yilmaz, Mehmet Bertan
AU - Suzuki, Takashi
AU - Sasano, Hironobu
AU - Bulun, Serdar E.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/8
Y1 - 2004/8
N2 - In breast cancer, a dense layer of undifferentiated fibroblasts is formed around malignant breast epithelial cells and referred to as desmoplastic reaction. These cells provide structural and functional support for tumor growth. Aromatase, the key enzyme in the biosynthesis of estrogen, is overexpressed in these undifferentiated fibroblasts, producing large quantities of estrogen, which in turn influences the growth and progression of malignant epithelial cells. We previously demonstrated that malignant epithelial cells produce large amounts of TNFα, which inhibit the differentiation of breast fibroblasts. TNF action is mediated by its two receptors (TNFRs), TNFR1, which mediates inhibition of adipocyte differentiation, and TNFR2, which was linked to the proliferation of thymocytes. We present evidence here that estrogen modulates the synthesis of receptors for TNF in human adipose fibroblasts (HAFs) from breast tissue in a paracrine fashion, which may serve as a mechanism for the inhibition of adipocyte differentiation in breast cancer. Estradiol (E 2) treatment increased TNFR1 mRNA and protein levels in primary HAFs in a dose- and time-dependent manner, which could be reversed by the estrogen antagonist ICI182,780. Interestingly, higher concentration of E2 inhibited whereas lower concentrations stimulated TNFR2 mRNA levels in HAFs. To investigate the specific roles of TNFRs in adipocyte differentiation, we incubated breast HAFs with receptor selective muteins of TNF. TNFR1-selective mutein decreased mRNA levels of aP2, a marker for adipogenic differentiation. This antiadipogenic effect was enhanced by cotreatment with E2. We conclude that high levels of estrogen found in breast tumors promote the antiadipogenic action of TNF on breast adipose fibroblasts by selectively up-regulating TNFR1, which may be a critical mechanism for desmoplastic reaction.
AB - In breast cancer, a dense layer of undifferentiated fibroblasts is formed around malignant breast epithelial cells and referred to as desmoplastic reaction. These cells provide structural and functional support for tumor growth. Aromatase, the key enzyme in the biosynthesis of estrogen, is overexpressed in these undifferentiated fibroblasts, producing large quantities of estrogen, which in turn influences the growth and progression of malignant epithelial cells. We previously demonstrated that malignant epithelial cells produce large amounts of TNFα, which inhibit the differentiation of breast fibroblasts. TNF action is mediated by its two receptors (TNFRs), TNFR1, which mediates inhibition of adipocyte differentiation, and TNFR2, which was linked to the proliferation of thymocytes. We present evidence here that estrogen modulates the synthesis of receptors for TNF in human adipose fibroblasts (HAFs) from breast tissue in a paracrine fashion, which may serve as a mechanism for the inhibition of adipocyte differentiation in breast cancer. Estradiol (E 2) treatment increased TNFR1 mRNA and protein levels in primary HAFs in a dose- and time-dependent manner, which could be reversed by the estrogen antagonist ICI182,780. Interestingly, higher concentration of E2 inhibited whereas lower concentrations stimulated TNFR2 mRNA levels in HAFs. To investigate the specific roles of TNFRs in adipocyte differentiation, we incubated breast HAFs with receptor selective muteins of TNF. TNFR1-selective mutein decreased mRNA levels of aP2, a marker for adipogenic differentiation. This antiadipogenic effect was enhanced by cotreatment with E2. We conclude that high levels of estrogen found in breast tumors promote the antiadipogenic action of TNF on breast adipose fibroblasts by selectively up-regulating TNFR1, which may be a critical mechanism for desmoplastic reaction.
UR - http://www.scopus.com/inward/record.url?scp=4043164397&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4043164397&partnerID=8YFLogxK
U2 - 10.1210/jc.2004-0127
DO - 10.1210/jc.2004-0127
M3 - Article
C2 - 15292343
AN - SCOPUS:4043164397
VL - 89
SP - 4018
EP - 4024
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
SN - 0021-972X
IS - 8
ER -